Synthese und Kristallstruktur eines gemischtvalenten Natrium-Oxocuprats (I, II): NaCu₂O₂*

G. Tams und Hk. Müller-Buschbaum

Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 4. Juni 1992)

Abstract

The hitherto unknown compound NaCu₂O₂ was prepared by a closed-tube technique. X-ray investigations of single crystals led to orthorhombic symmetry, space group D_{2h}^{16} (Pnma) (no. 62), a = 6.183 Å, b = 2.935 Å, c = 13.209 Å, Z = 4. Cu⁺ exhibits dumb-bell-like, Cu²⁺ square planar and Na⁺ square pyramidal coordination with oxygen. NaCu₂O₂ is isotypic with LiCu₂O₂. The crystal chemistry is discussed with respect to LiCu₂O₂ and TlCu₂O₂.

Zusammenfassung

Die bisher unbekannte Verbindung NaCu₂O₂ wurde in geschlossenen Silberbömbchen dargestellt. Röntgenographische Untersuchungen an Einkristallen führten zu orthorhombischer Symmetrie, Raumgruppe D_{2h}^{16} (*Pnma*) (Nr. 62), a = 6,183 Å, b = 2,935 Å, c = 13,209 Å, Z = 4. Cu⁺ zeight eine hantelförmige, Cu²⁺ eine quadratisch planare und Na⁺ eine quadratisch pyramidale O²⁻-Koordination. NaCu₂O₂ ist mit LiCu₂O₂ isotyp. Die Kristallchemie wird mit der von LiCu₂O₂ und TlCu₂O₂ diskutiert.

1. Einleitung

Gemischtvalente Oxocuprate(I, II) sind trotz der zahlreichen Arbeiten auf dem Gebiet der kupferhaltigen oxidischen Supraleiter relativ selten. Bekannt sind Cu₃TiO₄ [1], TlCu₂O₂ [2], LiCu₂O₂ [3, 4] und LiCu₃O₃ [3]. Erwähnt sei schließlich das in der Natur vorkommende Oxid Cu₄O₃, dessen Struktur vor rund 20 Jahren endgültig aufgeklärt wurde [5].

In der Kristallchemie der aufgeführten Stoffe spiegeln sich die typischen Eigenschaften der Oxocuprate(I) und Oxocuprate(II) wieder. Beide Valenzen des Kupfers sind Bestandteil der anionischen Teilstruktur, d.h. Cu⁺ ist hantelförmig und Cu²⁺ quadratisch planar von O²⁻ koordiniert.

Die Strukturaufklärung an LiCu₃O₃ [3] führte zu statistisch besetzten Lagen, die Cu²⁺ und Li⁺ gemeinsam enthalten. LiCu₂O₂ dagegen zeigt eine geordnete Metallverteilung [3]. Eine spätere Arbeit über LiCu₂O₂ [4] reduziert die *b*-Achse auf die Hälfte, wodurch die Symmetrie von tetragonal nach orthorhombisch wechselt. Infolge der kleinen Ordnungszahl was bei beiden Stoffen die Zuordnung der schwach streuenden Li⁺-Positionen schwierig. In der älteren Publikation wurden die Li⁺-Lagen durch MAPLE-Berechnungen [6-8] unterstützt.

Soeben ist es gelungen, das erste Natrium-Oxocuprat(I, II) darzustellen, dessen Zusammensetzung eine Isotypie oder enge Verwandtschaft zu LiCu_2O_2 erwarten läßt. Der folgende Beitrag berichtet über dessen Untersuchung.

2. Synthese von NaCu₂O₂-Einkristallen mit anschließender Röntgenstrukturanalyse

Gemischtvalente Oxocuprate können entweder aus den entsprechenden Oxiden des Kupfers unter totalem Ausschluß von Sauerstoff oder aus Cu₂O unter partieller Oxidation erhalten werden. Hier wurde der letztere Weg gewählt. Zur Synthese von NaCu₂O₂ wurden Cu₂O:Na₂O₂=2:1 unter trockenem Schutzgas innig vermengt und in Ag-Rohre überführt. Die verschweißten Ag-Bömbchen wurden 5 Tage auf 650 °C erhitzt und anschließend mit 40 °C h⁻¹ abgekühlt. Aus dem nicht ganz homogenen Reaktionsprodukt wurden braune Einkristalle abgetrennt und mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) analytisch untersucht. Mit Filmaufnahmen und Vierkreisdiffraktometer-Mes-

^{*}Herrn Prof. U. Wannagat zum 70. Geburtstag gewidmet.

Kristallsystem Gitterkonstanten (Å)	Orthorhombisch a = 6,1826(22), b = 2,9351(10), c = 13,2085(35)
Zellvolumen (Å ³) Auslöschungsbedingungen	239,69 0kl: k+l=2n hk0: h=2n h00, 0k0, 00l je 2n
Raumgruppe Diffraktometer	D_{2h}^{16} (<i>Pnma</i>) (Nr. 62) Philips PW1100, modifiziert durch Stoe
Strahlung/Monochromator Korrekturen	MoKa-Feinfokus Graphit Polarisations- u. Lorentzfaktor, empirische Absorptionskorrektur EMPIR [9]
Anzahl der symmetrieun- abhängigen Reflexe	384 $(F_0 > 6\sigma(F_0))$
Gütefaktor bei isotroper Verfeinerung der Tem- peraturfaktoren	R = 0,080 $R_{\rm W} = 0,070; \ w = 24,678/\sigma^2(F_0)$ $R_{\rm W} = \sum F_0 - F_c w^{1/2}/\sum F_0 w^{1/2}$

TABELLE 1. Kristallographische Daten und Meßbedingungen für NaCu $_2O_2$ mit Standardabweichungen in Klammern

TABELLE 2. Lageparameter und isotrope Temperaturfaktoren für NaCu₂O₂ mit Standardabweichungen in Klammern (in der Raumgruppe D_{2h}^{16} (*Pnma*) besetzen alle Atome die Punktlage 4c)

-	x	у	Z	<i>B</i> (Å ²)
Cu1	0,1302(5)	0,250	0,6055(2)	0,92(4)
Cu2	0,6150(5)	0,250	0,2558(2)	0,77(4)
Na	0,6435(17)	0,250	0,5764(6)	1,25(13)
01	0,6514(19)	0,250	0,3974(10)	0,88(18)
O2	0,0819(20)	0,250	0,3826(11)	1,22(20)

TABELLE 3. Interatomare Abstände (Å) mit Standardabweichungen in Klammern für $NaCu_2O_2$

Cu1-O2	1,974(8) (2×)	NaO2	2,309(12) (2×)
-01	1,995(8) (2×)	01	2,365(15) (3×)
O2	2,960(14)		
Cu2-O2	1,840(14)		
01	1,884(13)		

sungen wurden die kristallographischen Daten bestimmt. Diese sind neben den Meßbedingungen in Tabelle 1 aufgelistet. Mit dem Programm SHELXS-86 [10] wurden alle Atomlagen ermittelt und die Parameter mit dem Programm SHELX-76 [11] verfeinert. Die endgültigen Werte faßt Tabelle 2 zusammen. Mit diesen Daten berechnen sich die in Tabelle 3 aufgeführten wichtigsten Metall-Sauerstoff-Abstände.

3. Beschreibung der Kristallstruktur mit Diskussion

Wie erwartet, zeigt auch in NaCu₂O₂ Kupfer in Abhängigkeit von der Oxidationszahl die für Cu⁺ und Cu^{2+} typischen Nachbarschaftsverhältnisse zu O^{2-} . Cu^{2+} ist quadratisch planar koordiniert. Wie Abb. 1(a) verdeutlicht, bilden CuO₄-Quadrate durch Kantenverknüpfung längs [010] eindimensional unendliche Ketten, die zueinander isoliert auftreten. Diese werden über Cu⁺ längs [001] verknüpft, so daß Cu⁺ eine gestreckt hantelförmige O-Cu-O-Koordination erhählt. Na⁺ verbindet die so gebildeten Cu₂O₂-Schichten schließlich zum dreidimensionalen Kristallverband, wie er in Abb. 1(b) dargestellt ist. Die Na⁺-Ionen sind tetragonal pyramidal von O^{2-} koordiniert. Abbildung 1(b) ist ferner zu entnehmen, daß die NaO₅-Pyramiden miteinander sowohl über Kanten der Basisfläche als auch über Dreieckskanten verbunden sind.

Die Kristallstrukturanalyse zeigt, daß NaCu₂O₂ mit LiCu₂O₂ isotyp ist. Die röntgenographisch besser nachweisbaren Na⁺-Ionen bestätigen nicht nur die früher [3, 4] gefundenen Li⁺-Positionen, sondern unterstützen auch die kleinere Elementarzelle von LiCu₂O₂ [4]. Erstaunlich ist schon, daß in diesen isotypen Alkalimetall-Oxocupraten Li+ und Na+ die gleiche Koordinationssphäre aufweisen, da Li⁺ in anderen Oxiden eine tetraedrische Koordination bevorzugt. Im Vergleich zu den hier beobachteten Na-O-Abständen (2,31-2,36 Å) führen die wesentlich kleineren Li-O-Abstände (2,07-2,11 Å) in LiCu₂O₂ für Cu²⁺ zu einer 4+1 Koordination in Form einer gestreckten tetragonalen Pyramide. Abbildung 1(b) verdeutlicht ferner, daß mit schrumpfenden Abmessungen der Alkalimetallpolyeder die versetzt zueinander angeordneten ¹/_∞[CuO₂]-Ketten sich einander nähern, bis der in NaCu₂O₂ gemessene Abstand Cu–O von 2,96 Å in LiCu₂O₂ auf 2,47 Å verkürzt ist. Auf diese Weise rückt der fünfte O²⁻-Nachbar in eine Entfernung zu Cu²⁺, wie sie in Oxocupraten mit tetragonal pyramidaler Koordination um Cu²⁺ häufig beobachtet wurde [12].

Vergleicht man den Aufbau von NaCu₂O₂ mit dem von TlCu₂O₂ [2], so entsteht auf den ersten Blick der Eindruck, daß bis auf die Wellung in den $\frac{1}{\infty}$ [CuO₂]-Ketten eine identische Polyedervernetzung in der Kupfer-Sauerstoff-Teilstruktur vorliegt. Dies trifft jedoch nicht zu. TlCu₂O₂ zeigt eine alternierende Verknüpfung der $\frac{1}{\infty}$ [CuO₂]-Ketten durch O--Cu-O-Hanteln. Auf diese Weise entsteht fast ein dreidimensionales Cu-O-Netz. Abbildung 1(a) demonstriert, daß dieses in NaCu₂O₂ längs [001] durch NaO₅-Pyramidenschichten unterbrochen ist. Die in TlCu₂O₂ von Abb. 1(a) abweichende Verknüpfung von CuO₄-Quadraten durch O-Cu-O-Hanteln führt zu weiten Abständen (3,6–3,7 Å) der Tl⁺-Ionen. In NaCu₂O₂ betragen die Na-Na-Abstände 2,9–3,1 Å.

Abb. 1. (a) Isolierte Cu₂O₂-Schichten längs [001] in NaCu₂O₂: \oplus , Cu²⁺; \oplus , Cu⁺; \circ , O²⁻. (b) Perspektivische Darstellung der kompletten Kristallstruktur von NaCu₂O₂. Die tetragonalen Pyramiden um Na⁺ sind schraffiert, andere Symbole wie in (a).

Die für Tl⁺ häufig beobachtete Ähnlichkeit im chemischen Verhalten zu den Alkalimetallen ist beim Vergleich von TlCu₂O₂ mit NaCu₂O₂ nicht gegeben. Die Ursache hierfür ist die stereochemische Wirksamkeit des inerten Elektronenpaares von Tl⁺. Durch die in TlCu₂O₂ gegebene Wellung der $\frac{1}{\infty}$ [CuO₂]-Ketten in Verbindung mit der gegenüber NaCu₂O₂ modifizierten Vernetzung durch Cu⁺ entstehen tunnelähnliche Hohlräume, in die Tl⁺ so eingelagert ist, daß die s²-Elektronenpaare hinreichend Platz finden.

Dank

Alle Rechnungen wurden auf der elektronischen Rechenanlage RS 6000 des Instituts für Anorganische Chemie der Universität Kiel durchgeführt und die Zeichnungen mit einem modifiziertem ORTEP-Programm [13, 14] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich technische Zusammenarbeit mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56424, des Autors und Zeitschriftenzitats angefordert werden. Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 K. J. Range und F. Ketteri, Z. Naturforsch., Teil B, 32 (1977) 1356.
- 2 A. Adam, C. Felser-Wenz und H.-U. Schuster, Z. Anorg. Allg. Chem., 605 (1991) 157.
- 3 S. J. Hibble, J. Köhler, A. Simon und S. Paider, J. Solid State Chem., 88 (1990) 534.
- 4 R. Berger, A. Meetsma, S. van Smaalen und M. Sundberg, J. Less-Common Met., 175 (1991) 119.
- 5 M. O'Keeffe und J.-O. Bovin, Am. Mineral., 63 (1978) 180.
- 6 R. Hoppe, Angew. Chem., 78 (1966) 52.
- 7 R. Hoppe, Angew. Chem., 82 (1970) 7.
- 8 R. Hoppe, Adv. Fluorine Chem., 6 (1970) 387.
- 9 Programm zur empirischen Absorptionskorrektur (Psi-scan), Firma Stoe & Cie, Darmstadt, 1987.
- 10 G. M. Sheldrick, Program for Solution of Crystal Structures, Göttingen, 1986.
- 11 G. M. Sheldrick, Program for Crystal Structure Determination, Cambridge, 1976.
- 12 Hk. Müller-Buschbaum, Angew. Chem., 103 (1991) 741.
- 13 C. K. Johnson, *Rep. ORNL-3794*, 1965 (Oak Ridge National Laboratory, Oak Ridge, TN).
- 14 K.-B. Plötz, Dissertation, Kiel, 1982.